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Abstract—As an essential way of human emotional behavior understanding, facial expression recognition (FER) has attracted

a great deal of attention in multimedia research. Most of studies are conducted in “lab-controlled” environment, and their real-

world performance degenerates greatly due to factors such as head pose variations. In this paper, we propose a pose-based

hierarchical Bayesian theme model to address challenging issues in multi-pose FER. Local appearance features and global

geometry information are combined in our model to learn an intermediate face representation before recognizing expressions.

By sharing a pool of features with various poses, our model provides a unified solution for multi-pose FER, bypassing the

separate training and parameter tuning for each pose, and thus is scalable to a large number of poses. Experiments on both

benchmark facial expression databases and Internet images show the superior/highly-competitive performance of our system

when compared with the current state-of-the-arts.

Index Terms—Face expression recognition, Multi-pose, Hierarchical theme model, Supervised Latent Dirichlet Allocation,

Intermediate features
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1 INTRODUCTION
As an essential way of human emotional behavior
understanding, in the past decades, facial expression
recognition (FER) has attracted a great deal of at-
tention in multimedia research. The increasing ap-
plications of expression recognition, especially those
in Human Computer Interaction (HCI) [22], [39] and
affective computing, make it a core component in the
next generation of computer system [30], [38], [41],
[2], [29].

Recently, advances have been made in automatic
FER in terms of face detection, feature extraction and
expression classification. Most of these studies are
conducted in “lab-controlled” environment, in which
the faces captured are usually frontal or near-frontal
with only one character and a single scale [49]. The
real-world performance (e.g., on internet images or
personal photo albums) of these systems degener-
ates greatly where new challenges arise due to large
variations in expressions attributed to poses, identity,
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scales, etc..
More recently, a handful of methods on multi-pose

expression recognition have been proposed [34], [15],
[27], [35], [5]. These studies are mainly conducted
using deliberately acted multi-pose face images. Mod-
els are learned and parameter-tuned separately for
different poses [15], [27], failing to explicitly mod-
el the relationships between different poses. More
specifically, the existing methods on multi-pose FER
can be divided into face-shape-based methods (e.g.,
[3], [53], [18]) and face-shape-free methods (e.g., [27],
[16], [11]). Face-shape-based methods rely on 2D/3D
face-shape models that are used to decouple image
variations caused by changes in facial expressions and
head pose. Thus, FER accuracy is highly dependent on
how well the shape models are aligned with the image
data [18]. Face-shape free methods achieve multi-
pose/head-pose-invariance by using pose invariant
expression-related facial features extracted from 2D
images (e.g., texture and/or geometry-based features
extracted from manually marked facial points [49],
[43]), or by training the facial expression recognition
method pose-wise. However, extracting expression-
related facial features independent of head pose is
very difficult because the changes in head-pose and
facial expressions are nonlinearly coupled in 2D.
On the other hand, pose-wise FER requires a large
amount of training data in terms of different expres-
sions and poses, which are often not readily available.
In addition, the performance of pose-wise face-shape
free methods is expected to degenerate when tested
on facial images with continuous change in head pose.

Recently, it has been shown that using intermediate
features is very helpful for image understanding,
image retrieval and object recognition [13], [24]. The
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Fig. 1. Multi-pose FER using pose-based hierarchical
Bayesian model. Globally optimized landmarks are
shown on each detected face. Under each face, the
left histogram shows its distribution over the 40 in-
termediate themes, and the right histogram shows its
distribution over 300 codewords.

key is to integrate low-level facial features into an
intuitive intermediate representation which can be
shared across different poses to improve the learn-
ing performance. In [19], [9], hierarchical Bayesian
models, e.g., Latent Dirichlet Allocation (LDA), are
proposed to learn latent emotional topic features. In
[45], Tong et al. proposed a unified probabilistic facial
action model based on the dynamic Bayesian network
to simultaneously and coherently represent rigid and
nonrigid facial motions, their spatial-temporal depen-
dencies, and their image measurements. However,
these methods are mainly applied for frontal or near-
frontal face images/video frames, and they were not
robust to the pose changes.

In this paper, we propose a pose-based hierarchical
Bayesian theme model to address the research issues
for multi-pose FER (see Fig.1). In our system, automat-
ic face detection and pose estimation are conducted
on an input image. Then, features from local patches
centered on globally optimized landmarks are used
to learn the multi-pose intermediate representation
before classifying expressions. From a technique per-
spective, our model provides a unified solution for
multi-pose FER based on the shared pool of features.
The major contributions of this paper are:

1) Our pose-based hierarchical Bayesian model
provides a unified, shape-free framework to
handle various poses in FER and does not re-
quire separate training and parameter tuning for
each pose.

2) Local appearance features and global geometry
information are combined in our model to learn
a multi-pose, intermediate facial expression rep-
resentation. By sharing the pool of features a-
mong various poses, our theme model is able

to leverage the relationships between different
poses, and thus achieve great performance on
multi-pose FER.

The rest of the paper is organized as follows.
We introduce the related work in Section 2. Section
3 presents our pose-based hierarchical model and
Bayesian decision in details. Section 4 describes the
facial expression feature extraction. Our experimental
results are given in Section 5. Section 6 concludes.

2 RELATED WORK
FER is an active area in multimedia research because
of the importance of faces in emotion expression
and perception. Most of the existing work on FER
studies the expressions of six basic emotions: happi-
ness, sadness, surprise, fear, anger and disgust due to
their marked reference representation in our affective
lives and the availability of the relevant training and
test data [49], [47]. There are also a few tentative
efforts to detect non-basic affective states, such as
fatigue, boredom, confusion and frustration [49]. At
the beginning, studies are mainly based on deliberate
and often exaggerated facial display. Later on, effort-
s have been reported on the automatic analysis of
spontaneous facial expression recognition [7], [10]. For
a comprehensive survey of the works in expression
recognition please refer to [37], [49], [12]. In the fol-
lowing, we first review the work that concentrates on
multi-pose/pose-invariant FER, and then discuss the
literatures about hierarchical theme models.

2.1 Multi-pose/pose-invariant FER
Recent advances toward automatic multi-pose/head-
pose-invariant FER can be classified into face-shape-
based approaches and face-shape-free approaches
[34]. We first briefly review the face-shape-based
approaches, and then focus on the face-shape-free
approaches as the method proposed in this paper
belongs to the latter category. In [42], Active Ap-
pearance Models (AAM) are used to estimate the
3D head pose and locations of characteristic facial
points for head-pose-invariant FER. Later on, Ji et al.
[53], [45] use 3D face models to decouple rigid head
motions and nonrigid muscular motions. A nonlinear
mapping function from the 2D shapes of faces at any
non-frontal pose to the corresponding 2D frontal face
shapes is learned using Gaussian process regression
in [1], but it requires the 3D pose of the face as an
input to the regression. In general, face-shape-based
methods require accurate alignment of the face-shape
with the image data, which is challenging under
varying facial expressions. Moreover, these methods
ignore correlations across different poses.

The second category of approaches toward multi-
pose/head-pose-invariant FER are based on 2D face-
shape-free models. These methods achieve multi-
pose/head-pose-invariance by using pose invariant
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expression-related facial features extracted from 2D
images, or by training the facial expression recogni-
tion method pose-wise. According to the feature rep-
resentation, the 2D-face-shape-free multi-pose/head-
pose-invariance approaches can be further divided
into shape representation, low-level engineered rep-
resentation and high-level learning-based representa-
tion.

Shape representation relies on facial features such as
shape of the face components and/or the coordinates
of the facial landmarks. In [17], FER in non-frontal
poses is investigated based solely on the coordinate
values of 83 facial points. Rudovic et al. [34] proposed
a probability-based approach to perform head-pose-
invariant FER based on 2D geometric features from
39 facial landmark points. Low-level engineered rep-
resentations extract local features (e.g., Scale-invariant
Feature Transform (SIFT) and Local Binary Patterns
(LBP)) and encode them in a transformed image. Low-
level engineered features mainly capture skin texture
changes such as wrinkles, bulges, and furrows. In [50],
a facial image is divided into subregions, and then
SIFT descriptors are extracted from each subregion
and used as the input to a k-Nearest Neighbors classi-
fier (k-NN). LBP and its variations are systematically
evaluated in [27] for FER under different conditions,
e.g., image resolution and orientation. In [44], [40],
it was shown that a combination of sparse coding
and Bag of Features (BOF) achieves good FER results.
High-level learning-based representations encode fea-
tures that are semantically interpretable for FER in a
low- to high-level manner. The most well-established
paradigms for learning-based representations are s-
parse coding [6] and deep learning [32].

2.2 Hierarchical Theme Model

A shortcoming of 2D-face-shape-free multi-
pose/head-pose-invariant FER methods is that
they perform pose-wise facial expression recognition.
That is, feature extraction and classifier training are
conducted separately for similar poses. Thus, they
can not explicitly model the relationships between
different poses and do not scale well to a large
number of poses due to the lack of a shared pool
of features and a unified classification model [34].
Furthermore, these methods require a large amount
of facial expression data per pose in order to train
the classifiers. Parameter tuning for each pose model
is time-consuming and generally is not applicable in
real-world applications.

Hierarchical theme models such as LDA can model
the inter- and intra-class structure of feature distribu-
tions, in which each image is represented as a finite
mixture over an intermediate set of topics. However,
topics are typically discovered in an unsupervised
fashion and thus have limited use for classification. D-
ifferent from unsupervised models which often learn

topics hard to interpret, supervised variations of LDA
have the ability to control the content of topics and
are widely used for text or image classification. The
main idea is to incorporate the class label variable
into the generative model to enforce content of topics
to handle specific classification tasks. Examples in
this direction include the classLDA (cLDA) [23], the
supervised LDA (sLDA) [4] and the labeled LDA.

More specifically, In cLDA, a class label is intro-
duced as the parent of the topic prior. In this way, each
class defines a prior distribution in the topic space,
conditioned on which the topic probability vector is
sampled. In sLDA, the class variable is conditioned
by topics directly. In this paper, we propose to com-
bine cLDA and sLDA into a unified framework that
models the variation of both poses and facial expres-
sions. Thus, our model can learn an intermediate FER
feature representation shared by different poses.

3 POSE-BASED HIERARCHICAL
BAYESIAN MODEL FOR FER
In this paper, we propose a pose-based hierarchi-
cal Bayesian theme model for multi-pose FER. The
architecture of our system is shown in Fig.2. First,
face detection, pose estimation and landmark local-
ization are performed using the tree-based model
[52]. Then, faces are modeled as a collection of local
patches centered at the landmarks, based on which we
construct the codewords and themes, and train our
pose-based hierarchical Bayesian model. Finally, FER
is performed. In the following, we first present our
theme model in details. Feature extraction is discussed
in Section 4.

Fig. 2. System architecture

3.1 Pose-based Hierarchical Bayesian Theme
Model
Figure 3 is a graphical illustration of our pose-based
hierarchical Bayesian theme model. By introducing a
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variable c for pose, our model is a variation of the
supervised Latent Dirichlet Allocation (sLDA) [19].
Pose is explicitly introduced because it is one of the
most decisive factors for multi-pose FER and can be
estimated with high accuracy. Other environmental
factors such as illumination are more complex and
hard to be untangled and determined separately.

Specifically, we model a facial image as a collection
of local patches. Each patch is represented by a code-
word from a large vocabulary of codewords. The goal
of learning is to achieve a model that best represents
the distribution of these codewords in a category of
expressions. In recognition, therefore, we first identify
all the codewords in the unknown facial image. Then,
we find the expression category model that best fits
the distribution of the codewords of the image. These
distributions that best represent the distribution of the
codewords in each category of expressions are called
intermediate features or latent expression themes of
expression categories. Next, we present our model by
going through the generative process for creating a
facial image with a specific expression and pose.

Fig. 3. Pose-based Hierarchical Bayesian theme mod-
el for multi-pose FER.

Suppose we have J face images belonging to C pos-
es and Y expressions J = {(I1, c1, y1), ..., (IJ , cJ , yJ )},
where each image is labeled with expression y =
{1, ..., Y } and pose c = {1, ..., C}. Also assume D is the
number of images for each pose. An image I is mod-
eled using a collection of N patches I = {x1, ..., xN},
where a patch xn is typically represented by the
codewords in a codebook. In Fig.3, x, c and y are
shaded by common convention to indicate that they
are observed variables. Nodes with variables with
no shading in the graph are unobserved. Under our
theme model, a facial image arises from the following
generative process.

1) Choose the pose variable c ∼ p(c|η) for each face
image, where p(.) is the multinomial distribution
of poses with C outcomes and parameterized
by η. η is a C-dim vector of a multinomial

distribution.
2) For this face image with pose c, draw a pa-

rameter π from the multinomial distribution
π ∼ p(π|c, α) to determine the distribution of
the themes, where α is a Dirichlet prior on the
training sets and is a matrix of size C×K, where
K is the total number of themes and assumed
to be known in advance.

3) For each patch xn in the face image Ii

a) Choose a latent theme zn ∼ p(zn|π), where
p(.) is a latent theme multinomial. zn is a
K dimensional unit vector.

b) Choose a patch xn ∼ p(xn|zn, β) with a
latent theme zn, where β is a K×T matrix,
and T is the total number of codewords in
the codebook.

4) Draw the facial expression variable y ∼
p(y|zn, θ, ξ). p(.) is the Gaussian distribution
Gauss(Z̄, θ, ξ) with the parameter θ and ξ, where

Z̄ := (1/N)
∑N

n=1
zn is the mean theme as-

signment vector. Here, the Gaussian parameters,
mean μ and variance σ2, are equal to θT Z̄ and
ξ.

Given the parameters η, α, β, θ and ξ, the joint prob-
ability of poses c, expression y, themes z, patches x
can be written as:

p(x, z, π, c, y|α, η, β, θ, ξ) = p(c|η)p(π|c, α)
(
∏N

n=1
p(zn|π)p(xn|zn, β))p(y|zn, θ, ξ)

(1)

with
p(c|η) = Mult(c|η), (2)

p(π|c, α) =
∏C

j=1
Dir(π|c, αj.)

δ(c,j), (3)

p(zn|π) = Mult(zn|π), (4)

p(xn|zn, β) =
∏K

k=1
p(xn|β)δ(zk

n,1), (5)

p(y|zn, θ, ξ) = 1√
2πξ

exp{− (y − θT Z̄)2

2ξ
}, (6)

where N is the number of patches in an image;
Mult represents the multinomial distribution and Dir
denotes the Dirichlet distribution.

In the hierarchical representation of our theme
model, the Dirichlet parameter α is at the pose-level,
sampled once in the process of generating a pose. The
multinomial variable π is at the theme-level, sampled
once per face image. Through this parameter, the
model can learn the relationships among different
poses by sharing the pool of features. The theme
variable z and patch x are at the patch-level, sampled
every time a patch is generated. Finally, the Gaussian
parameters θ and ξ are at the category-level, sampled
once in the process of generating an expression.
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3.2 Parameter Estimation
The parameters of our model are η, α, β, θ and ξ. For
convenience, the distribution of p(c |η ) is assumed to
be a fixed uniform distribution in which p(c) = 1/C.
The Dirichlet hyperparameters α can be estimated
following the standard procedure of maximum like-
lihood estimation [33]. Next, we discuss how to esti-
mate β, θ and ξ.

Given a corpus of facial expression images with
emotion labels, D = {(xd, yd)}Dd=1, we estimate the
parameters β, θ and ξ using Expectation Maximization
(EM). Specifically, the corpus log-likelihood could be
represented as,

L(D) =

D∑
d=1

log p(x|α, β, θ, ξ, y). (7)

In the expectation step (E-step), we approximate
the posterior distribution for each facial image using
the variable inference algorithm described in the next
section. In the maximization step (M-step), the lower
bound in Eq. (7) is maximized over all facial images
with respect to the model parameters β, θ and ξ by
finding the maximum likelihood estimation under
expected sufficient statistics [4]. The M-step updates
are described below.

Estimating the topics: Given T as the number of
codewords, the terms containing β1:K are

L[β1:K ](D) =
D∑

d=1

Nd∑
n=1

K∑
k=1

φdni logβk,xn

+
K∑

k=1

μi(
T∑

t=1

βkt − 1).

(8)

Setting ∂Lβ1:K
(D)/∂βit = 0 leads to

βnew
k,x ∝

D∑
d=1

Nd∑
n=1

1(xn = t)φk
d,n. (9)

Estimating the GLM parameters: The parameters
in the generalized linear model (GLM) are the coeffi-
cients θ and the dispersion parameter ξ. The gradient
about GLM coefficients θ could be represented as

∂L

∂θ
=

∂

∂θ
(
1

ξ
)

D∑
d=1

{θTE[Z̄d]yd − E[A(θT Z̄d)]}

= (
1

ξ
){

D∑
d=1

E[Z̄d]yd −
D∑

d=1

Ed[μ(θ
T Z̄d)Z̄d]}

= (
1

ξ
){

D∑
d=1

φ̄yd −
D∑

d=1

Ed[μ(θ
T Z̄d)Z̄d]}.

(10)

Because the parameters θ and ξ obey a gaussian
distribution, setting ∂L/∂θ = 0 leads to

∑
d

E[Z̄dZ̄
T
d ]θ = E[Z̄]

T
y ⇒

θ̂new ← (
∑
d

E[Z̄dZ̄
T
d ])

−1E[Z̄]T y,
(11)

where E[Z̄] = φ̄ = 1
N

N∑
n=1

φn, μ(·) = EGLM [Y |·]. The

derivative with respect to ξ, evaluated at θ̂new, can be
represented as

{
D∑

d=1

∂h(yd, ξ)/∂ξ

h(yd, ξ)
}

+ (
1

ξ
){

D∑
d=1

[θTnew(E[Z̄d]yd)− E[A(θTnewZ̄d)]},
(12)

where h(y, ξ) is the base measure in GLM with natural
parameter y and dispersion parameter ξ. The partial
derivative of ∂h(yd,ξ)/∂ξ

h(yd,ξ)
is equal to − 1

2ξ . Using this
derivative and definition of θ̂new, the dispersion pa-
rameter M-step is exact,

ξ̂new ← 1

D

{
yT y − yTE[Z̄]θ̂new

}
. (13)

3.3 Variational Inference

In Bayesian decision theory, given an unknown image
represented as a collection of patches (or codewords),
the key inferential problem is to compute the posterior
distribution of the latent variables:
p(zn, π|xn, y, c, α, β, θ, ξ) =

p(π|c, α)(
∏N

n=1
p(zn|π)p(xn|zn, β))p(y|zn, θ, ξ)p(c|η)

∫
p(π|c, α) ∑

z1:N

(
∏N

n=1
p(zn|π)p(xn|zn, β))p(y|zn, θ, ξ)p(c|η)dπ

,

(14)

where α, β, η, θ and ξ are parameters learned from the
training set. As mentioned in Section 3.2, p(c|η) is al-
ways assumed to be a fixed uniform prior p(c) = 1/C.
The normalizing value of Eq. (14) is the marginal
probability of the observed data which is known as
the likelihood. Unfortunately, this marginal proba-
bility is computationally intractable because of the
coupling between α, β, θ and ξ in the summation
over latent themes [4]. Thus, we appeal to variation-
al methods to approximate the posterior. There are
a wide variety of approximate inference algorithms
which can be considered. In this paper, we adopted
mean-field variational algorithm in which Jensen’s
inequality [4] is used to compute the lower bound of
the normalizing value. Our goal is to maximize the log
likelihood log p(x|α, β, θ, ξ, y), which, using Jensen’s
inequality, is bounded by

log p(x|α, c, β, θ, ξ, y) = log

∫
π

∑
z

p(x, z, π|α, c, β, θ, ξ, y)dπ

= log

∫
π

∑
z

p(x, z, π|α, c, β, θ, ξ, y)q(z, π|γ, φ)
q(z, π|γ, φ)dπ

≥ E[log p(x, z, π|α, c, β, θ, ξ, y)]− E[log q(z, π|γ, φ)].
(15)

If all expectations are taken with respect to
q(z, π|γ, φ), where γi is a K-dimensional Dirichlet
parameter vector and each φni parametrizes a categor-
ical distribution over K elements, the evidence lower
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bound is achieved as:
L(x, y|α, c, β, θ, ξ) = E[log p(π|α, c)]
+

∑N

n=1
E[log p(zn|π)] +

∑N

n=1
E[log p(xn|zn, β)]

+ E[log p(y|zn, θ, ξ)]− E[log q(z, π|γ, φ)],
(16)

where q(z, π|γ, φ) is a distribution of the latent vari-
ables. It is introduced to simplify the lower bound and
could follow arbitrary variational distribution.

Maximizing the lower bound with respect to γ and
φ is the same as minimizing the Kullback-Leibler
(KL) divergence between the variational distribution
and the true posterior. This minimization can be im-
plemented via an iterative fixed-point method. The
updating rules are given as follows:

γnew ←− αi +
∑N

n=1
φni, (17)

φnew ∝ exp{Eq[log π] + E[log p(xni|β)]
+ (

yi
Nξ

)θ − (
1

2N2ξ
)[2(θTφ−ni)θ + (θ ◦ θ)]}, (18)

where i and n are used to index a topic and a patch,
respectively, and φ−mi :=

∑
ni �=mi φni.

3.4 Classification
Given a new facial image and a fitted model α, β, θ
and ξ, we first compute q(z, π) and the variational
posterior distribution of the latent variables zn. Then,
for Gaussian distributions, since the mapping from
the natural parameter to the mean parameter is the
identity function, the expression categories of the
facial image are given as [4]:

E[y|I = {x1, ..., xN}, c, η, α, β, θ, ξ] ≈ θTE[Z̄]. (19)

Expression recognition is then achieved by maxi-
mizing the function,

y∗ = arg max
y∈{1,...,Y }

θTy E[Z̄]

= arg max
y∈{1,...,Y }

θTy φ̄.
(20)

Compared with the other models, our model can
recognize multi-pose facial expression in a unified
model without tuning parameters separately.

4 EXPRESSION FEATURE EXTRAC-
TION
In this section, we present our expression feature ex-
traction method, which is summarized in Fig.4. First,
globally optimized landmarks are localized simulta-
neously with pose estimation through a tree-based
part model on a detected face. Then, SIFT or LBP-
based features are extracted from the local patches
centered at these landmarks and are used to construct
a codebook by k-means. Finally, the latent expression
themes are learned in the hierarchical Bayesian theme
model. Our goal is to represent the appearance vari-
ations in facial images, while being robust to pose
changes.

Fig. 4. The flow chart of expression feature extraction

4.1 Pose Estimation and Landmark Localization

We adopted the tree-based part model in [52] to
perform simultaneous pose estimation and landmark
localization. This method entails invariance to trans-
formations such as scale, translation and in-plane rota-
tions. Compared with AAM [26], this model captures
more of the relevant elastic deformation so that it is
more suitable for localizing landmarks for faces with
different poses. However, note that the performance
gain is achieved with higher computational complex-
ity. The tree-based part model generally runs slower
than AAM.

The bottom left panel of Fig.4 shows an example of
landmark localization. Specifically, 51 points are lo-
cated for frontal and near-frontal faces, and 28 points
for profile faces. They are usually around the center of
eyes and mouths, and along the eyebrows and noses.
Compared with dense sampling over the entire face,
using patches centered at the landmarks presents a s-
parse representation of the facial expression, and thus
can effectively speed up the FER process. In addition,
landmark localization does not need additional time
because they are performed during face detection.

4.2 Local Patch Sampling

Local features from patches are more robust to oc-
clusions and spatial variations than global ones. An
image patch is first obtained for each landmark and
then normalized to 16× 16 pixels. To leverage multi-
scale representation, we tested the following sampling
procedures for each patch:

• Grid. A patch is sampled with a 2 × 2 grid, and
each cell in the grid is of the size 8× 8.

• Single-scale Dense. The sampled patch is the same
as the original patch, 16× 16.
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• Multi-scale Dense. For a given patch, we construct-
ed a two-level pyramid, a 16×16 region and four
8 × 8 regions. Features are extracted from each
region and then concatenated.

• DoG Detector. For a given patch, uncertain regions
that are stable and rotationally invariant over the
same scales are extracted using the DoG detector
[25]. Scale of each region is 8× 8.

Finally, Local features including 128-dim SIFT and
243-dim LBP are extracted from each sampled patch.

4.3 Codebook Construction and Encoding

Given the collection of patches from the training
images, the codebook of SIFT and LBP descriptors is
constructed by k-means algorithm. The codebook is
composed of centers of all clusters, usually refereed
to as codewords. Notice that face regions, i.e., eyes,
mouths, eyebrows and noses, have been automatically
detected by the tree-based part model, and they may
play different roles in FER depending on the pose.
Thus, we propose three encoding methods to con-
struct the codebook: equal weights, unequal weights
determined by a grid search, and coding each region
separately (see the bottom right panel of Fig.4).
• EW (Equal Weights): The bin of each codeword

gives the weighted sum of the number of the
closest patches. The four regions are equally
weighted at 0.25.

• UW (Unequal Weights): The bin of each codeword
gives the weighted sum of the number of the clos-
est patches. The weights of regions are provided
by a grid search.

• SC (Separate Coding): We code each of the four
regions separately using equal weights. The size
of the codebook is quadrupled when compared
with EW and UW.

4.4 Intermediate Features

Based on the collected training data, we can build the
pose-based hierarchical Bayesian theme model and
obtain the distribution of codewords on latent themes
and that of themes on each expression and pose.
Namely, we can achieve a model that best represents
the distribution of codewords over each expression
and pose. These distributions are called intermediate
features or latent expression themes. They provide
a shared pool of expression features in a unified
framework, scalable to a large number of poses. For
example, we can intuitively understand the interme-
diate features for disgust expression such as wrinkling
nose and raised upper lip (see the top panel of Fig.4).
The latent aspects of facial images, hidden behind the
bag of features, once discovered, are well suited to
reveal the distinctions between facial expressions with
various head poses, and thus lead to higher accuracy
of recognition.

5 EXPERIMENTS & RESULTS
5.1 Datasets
Our approaches were thoroughly evaluated in subject-
dependent experiments on the following datasets: 1)
three public multi-pose facial expression databases:
the Radboud Faces Database (RAFD) [20], the Karolin-
ska Directed Emotional Faces Database (KDEF), and
the Multi-PIE database [14]; 2) one 3D facial expres-
sion database: BU-3DFE [48]; 3) one facial expression
in the wild dataset: Static Facial Expressions in the
wild (SFEW) [8]; and 4) a dataset consisting of images
randomly downloaded from the Internet.

The number of facial images in RAFD and KDFE are
8,040 and 4,900, respectively, for five poses and seven
basic expressions. We combined RAFD and KDEF
as one dataset so that we have sufficient training
samples, especially for those pose-wise FER models.
The combined dataset contains 12,940 face images
covering seven basic expressions (i.e., anger, disgust,
fear, happiness, sadness, surprise, and neutral) with
five poses (180◦, 135◦, 90◦, 45◦ and 0◦). The size of an
image is 681 × 1024 in RAFD and 562 × 762 in KDEF.
The CMU Multi-PIE face database contains more than
750,000 images of 337 people. Subjects were imaged
under 15 view points and 19 illumination conditions
while displaying a range of facial expressions.

The 3D facial expression database, namely BU-
3DFE [48], has 100 subjects with 3D models and face
images. We rendered 2D facial images at four levels
of intensity and in five yaw views (90◦, 60◦, 45◦, 30◦,
and 0◦) with six facial expressions. In total, 12,000 face
images are used for our experiment. The size of an
image is 1264 × 931 in BU-3DFE. The SFEW dataset
consists of 700 images of 95 subjects, extracted from
movies containing facial expressions with various
head poses, occlusions and illumination conditions.
The images have been labeled in terms of six basic
emotion expressions [8].

5.2 Parameter Selection
As the first step of our experiment, we construct a
validation set by randomly selecting 2,975 face images
from RAFD, 85 images for each expression and pose.
This validation set is used to choose the parameters
used in our later experiments.

Local patch sampling method: Table 1 shows how
different sampling methods and feature descriptors
influence the performance of FER. The accuracy here
is averaged over all facial expressions and poses. For
convenience, we encoded each facial region separate-
ly (SC) in this experiment. Clearly, DoG sampling
method outperforms all others regardless the choice
of using SIFT or LBP descriptors. In addition, SIFT
features give higher accuracy than LBP descriptors.
So, in our following experiments, we employed DoG
to sample local patches and to obtain a multi-scale
feature representation.
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TABLE 1
Recognition accuracy (reported in %) for different

patch sampling methods. Features are encoded with
SC. The accuracy reported are averaged over all

poses and expressions in RAFD

Descriptor Grid Single-scale Multi-scale DoG

243-dim LBP 43.05 59.60 61.52 68.53
128-dim SIFT 56.00 60.02 64.44 74.96

Feature Descriptor and Encoding Method: Fig. 5
compares different feature descriptors (i.e., SIFT and
LBP) and different encoding methods (i.e., EW, UW
and SC) based on recognition accuracy. In EW, the
four facial regions (i.e., eyes, mouths, eyebrows and
noses) share an equal weight of 0.25. In UW, best
weights for regions are grid searched with a step of
0.1, and we adopted the following weights that give
the highest overall recognition accuracy: 0.1 for noses,
0.2 for eyebrows, 0.3 for eyes, and 0.4 for mouths.
In SC, each region is coded separately. In Fig.5, we
report the average accuracy of seven expressions for
each pose. Clearly, regardless the choice of SIFT or
LBP, SC generally outperforms the other two encoding
methods. Between SIFT and LBP, SIFT features encod-
ed with SC achieve a higher recognition accuracy of
74.96%, averaged over all poses. Thus, SIFT and SC
are selected as the feature descriptor and encoding
method in our following experiments. Also note that
better recognition performance is obtained on frontal
or near frontal faces, with accuracy of over 80%. This
is mainly attributed to the fact that more discrimina-
tive features are available under these poses.

The Number of Themes and Size of Codebook:
Fig. 6(a) plots the recognition rate vs. the different
number of themes. Again, the accuracy is averaged
over all poses and expressions. Clearly, the highest
accuracy is achieved when the number of theme
is 40, which we used in our following evaluation.
Fig.6(b) illustrates the effects of the codebook size
on the recognition accuracy. Notice that the highest
recognition accuracy is achieved when the codebook
size is 300. Thus, we fix it at 300 in all our following
experiments.

5.3 Effect of Landmark Localization and Pose Es-
timation Error on FER
We use the tree-based part model [52] to estimate
the poses and locate the landmarks since it captures
more of the relevant elastic deformation compared
with the AAM model. The experiments in [52] show
that the tree-based part model works best when com-
pared with the multi-AAM and face.com, scoring
91.4% when requiring exact matching, and 99.9%
when allowing ±15o error tolerance on the Multi-
PIE dataset. For the landmark localization, the tree-
based part model also outperforms the state-of-the-art

0 45 90 135 180 Average
40

50

60

70

80

90

A
cc

ur
ac

y(
%

)

Poses

EW+LBP
SC  +LBP
UW+LBP

0 45 90 135 180 Average
40

50

60

70

80

9090

A
cc

ur
ac

y(
%

)

Poses

EW+SIFT
SC  +SIFT
UW+SIFT

Fig. 5. Performance comparison of feature descriptors
(SIFT and LBP) and encoding methods (EW, UW and
SC) over five poses (180◦, 135◦, 90◦, 45◦, and 0◦) in
RAFD. Top panel: Averaged accuracy of LBP with
the three encoding methods. Bottom panel: Averaged
accuracy of SIFT with the three encoding methods.
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Fig. 6. (a) Number of themes versus average recog-
nition accuracy. (b) Size of codebook versus average
recognition accuracy.

Constrained Local Models (CLM) [36] (average error
of 4.39 pixels or relative error 2.3% vs. 4.75 pixels or
2.8%) on the Multi-PIE. In this section, experiments
are conducted on the validation set of RAFD to ana-
lyze how the FER accuracy is affected by erroneous
landmarks and poses.

Effect of Landmark Localization Noise on FER:
In this experiment, landmark locations of the facial
images in the validation set are deliberately corrupted
by different levels of noise (randomly selected from
the interval) in [-σ, σ], with σ = 0, 2, 5, 8, 15, 20, 30
pixels. The mean FER accuracies and standard devia-
tions of noise-corrupted data with different intervals
are reported in Table 2. In each column in Table 2, the
results are achieved by five-fold cross-validation on

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TMM.2016.2629282

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



9

the data corrupted by the same interval of noise, and
averaged over all expressions for each pose. The last
row of Table 2 gives the accuracy averaged over all
poses and expressions for each interval of noise.

Clearly, the highest accuracy averaged over al-
l poses and expressions and the smallest standard
deviation are achieved by the clean data. The mean
FER accuracy waves when σ is smaller than 8. This
is mainly caused by the randomness in noise sam-
pling: the levels of noise are randomly selected in
the interval in [-σ, σ], and the intervals are rather
small. Note that the smallest standard deviation is
always achieved by the noiseless data. When σ is
larger than 8, the mean FER accuracy consistently
degenerates. Generally, our model is quite tolerable
regarding landmark localization errors.

Effect of Pose Estimation Noise on FER: In this ex-
periment, poses of the facial images in the validation
set are deliberately corrupted by different levels of
noises: Δ = 0%, 2%, 5%, 8%, 10%, 15% and 20%, where
Δ = i% indicates that the poses of i% images in the
dataset are randomly changed. The FER accuracies
and the standard deviation of noise-corrupted data
with different levels of noises are reported in Table 3.
In each column in Table 3, the results are achieved
by five-fold cross-validation on the data corrupted
with the same level of noises, and averaged over all
expressions with each pose. The last row of Table
3 shows the accuracy averaged over all poses and
expressions.

Clearly, FER accuracy in our model is more sensi-
tive to pose estimation noise than that on landmark
locations. Regardless of the pose, the highest accu-
racy and the smallest standard deviation are always
achieved by the noiseless data. This is mainly because
pose is explicitly introduced in our hierarchical theme
model.

5.4 Performance Evaluation

Latent Themes: Fig. 7 illustrates the latent theme
model learned for each expression of the five pos-
es. A small panel in the figure shows the feature
distribution over the 40 expression themes, averaged
over all the training images with the corresponding
expression and pose. Clearly, these distributions vary
greatly. In other words, our model can identify latent
discriminative features for better multi-pose FER.

Recognition Accuracy on RAFD and KDEF: In
order to evaluate our model, we compared its perfor-
mance with three popular machine learning methods,
namely, the multi-SVM [15], DHMM [28] and sLDA
model [4], [19].

The multi-SVM model consists of five SVMs, each
trained separately with expression images under a
specific pose: 180◦, 135◦, 90◦, 45◦, and 0◦. The Radial
Basis kernel is adopted in each SVM. The parameters
C ∈ [−1, 10] and δ ∈ [−1, 1.5] of each SVM are tuned

Fig. 7. Theme distributions. Each row represents one
pose and each column represents one expression. The
panel shows the mean distribution of the 40 latent
expression themes on different poses and expressions.

by grid search with a step of 0.1 using the validation
set. During recognition, the pose of an input facial
image is first estimated, and then the corresponding
SVM is used to classify the face into one of the seven
expression categories.

Following [28], [21], [46], in DHMM, different parts
of a facial image are considered as an observation
sequence for FER. Specifically, the observed status of
the DHMM model is set as the features of different
facial parts in a given facial image, and these ob-
served statuses determine the expression of the face.
DHMM model is composed of thirty five DHMMs,
each trained separately with images under a specific
expression and pose. The number of the observed
status in the DHMM model is empirically fixed as
8, and that of the hidden status is set at 90 by a
grid search with a step of 10 in the range of [30, 150]
using the validation set. The initial values of prior
probabilities and state transition probabilities in each
DHMM are generated randomly.

Finally, sLDA are trained based on the facial im-
ages with expressions regardless of poses. 4,900 facial
images are randomly selected from RAFD and KDEF
with the seven expressions and five poses (excluding
the 2,975 images in the validation set) to train and
test our theme model, multi-SVM, DHMM and sLDA.
Recognition accuracies (with standard deviation) of
the four methods are obtained using five-fold cross-
validation and averaged over all expressions and
poses in Table 4. In addition, Tables 5 and 6 provide
results over each pose and expression.

Clearly, our model outperforms multi-SVM, DHM-
M and sLDA. The significant accuracy gain over
sLDA shows the advantage of explicitly introducing
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TABLE 2
FER accuracy and standard deviation with different levels of noise ([−σ, σ], σ = 0, 2, 5, 8, 15, 20, 30 pixels)

added to landmark locations, reported in %. The highest accuracy for each pose is highlighted in bold.

Poses σ = 0 σ = 2 σ = 5 σ = 8 σ = 15 σ = 20 σ = 30

0◦ 66.28±4.28 62.86±4.56 65.43±4.73 63.14±7.42 58.86±4.18 57.14±4.52 53.14±4.45
45◦ 82.86±4.11 83.48±4.23 81.14±4.73 84.57±6.96 75.71±6.39 76.86±6.09 72.00±6.17
90◦ 84.57±4.18 83.14±4.64 85.14±4.93 82.57±4.18 77.43±5.10 78.85±4.73 76.29±4.94
135◦ 79.71±3.47 78.17±4.45 78.29±5.14 80.57±6.98 78.57±5.50 74.85±3.90 72.57±6.22
180◦ 66.57±4.43 61.43±5.03 64.57±4.77 63.14±4.77 61.20±6.48 56.00±4.73 54.29±4.44
Mean 76.00 73.82 74.91 74.80 70.35 68.74 65.56

TABLE 3
FER accuracy and standard deviation with different levels of noise (Δ = 0%, 2%, 5%, 8%, 10%, 15% and 20%)

added to poses, reported in %. The highest accuracy for each pose is highlighted in bold.

Poses 0% 2% 5% 8% 10% 15% 20%

0◦ 66.28±4.28 65.71±4.30 64.00±5.38 64.00±4.55 63.14±4.38 64.29±5.03 59.57±4.92
45◦ 82.86±4.11 82.57±4.90 79.71±4.73 80.86±6.36 82.86±4.52 80.71±6.35 77.57±7.48
90◦ 84.57±4.18 84.00±4.66 81.14±4.28 81.71±5.53 82.00±5.61 80.71±5.29 77.57±5.71
135◦ 79.71±3.47 79.14±3.55 78.00±3.94 77.71±5.76 76.29±5.48 77.00±5.18 75.29±5.12
180◦ 66.57±4.43 66.29±5.31 64.57±4.46 62.86±5.50 64.00±6.29 60.28±5.64 58.43±5.93
Mean 76.0 75.54 73.49 73.43 73.66 72.80 69.89

TABLE 4
Overall performance comparison among our model,

multi-SVM, DHMM and sLDA. The highest one is
highlighted in bold

Database Our model Multi-SVM sLDA DHMM
RAFD & KDEF 74.96±2.28 67.84±2.31 59.06±2.96 61.86±2.32

BU-3DFE 80.47±1.79 74.07±2.01 64.67±2.66 62.72±2.35

TABLE 6
Recognition accuracy and standard deviation

comparison across five poses among our model,
multi-SVM, DHMM and sLDA on RAFD and KDEF,
and the highest one for each pose is highlighted in

bold.

0◦ 45◦ 90◦ 135◦ 180◦
Multi-SVM 56.83±1.21 73.89±0.82 79.72±0.73 77.81±1.03 50.95±0.98

sLDA 49.68±1.01 65.39±0.92 69.98±0.54 63.73±0.74 46.51±1.17
DHMM 50.75±0.88 65.56±0.76 74.36±0.56 66.37±0.35 52.28±0.97

Our model 64.03±0.52 77.26±0.65 85.60±0.11 80.65±0.23 67.60±0.91

poses in the hierarchical Bayesian model. In addition,
our unified model avoids the separate training and
parameter tuning in multi-SVM and DHMM, and thus
highly scalable to the large number of poses seen in
multi-character images.

The confusion table in Fig.8(a) provides details
of the performance of our model on each facial
expression. The values in the main diagonal give the
recognition accuracy of each expression, averaged
over all poses. A closer look at the table reveals
that, among the seven expressions, anger, disgust,
happiness and surprise are easier to be recognized
with accuracy of over 80%. Other expressions have a
lower recognition rate, with the lowest at 55.7% for

fear. The averaged accuracy over all expressions is
75.0%.

Recognition Accuracy on BU-3DFE: In this experi-
ment, we compared FER accuracy of our model with
multi-SVM, DHMM and sLDA model on BU-3DFE.
Recognition accuracies (with standard deviation) of
the four methods are obtained using five-fold cross-
validation and averaged over all expressions, poses,
and intensity levels in Table 4. The confusion table
in Fig.8(b) provides details of the performance of our
model on each facial expression of BU-3DFE. A closer
look at the table reveals that, like the results on RAFD
and KDEF, among the six expressions, anger is easier
to be recognized, while fear and sadness are more
difficult to be recognized. In addition, the recognition
accuracy of fear is higher than that in Fig.8(a) since
samples of fear at intensity level 3 and 4 in BU-3DFE
are more exaggerated than those in RAFD and KDEF.

Moreover, we also compared the recognition accu-
racy of our method with the current state-of-the-art
results reported in [27], [51], [50] on BU-3DFE for head
pose invariant FER. Details regarding each method,
e.g., feature extraction, classification algorithms, pose
numbers and the expressions adopted, are summa-
rized in Table 7. All results are obtained using object-
independent ten-fold cross-validation. Specifically, we
randomly divide the 100 subjects into a training set
with 90 subjects and a testing set with 10 subjects.
Both training and testing sets are over all six expres-
sions, four intensities, and five views of each subject,
resulting in 10,800 training facial images and 1,200
testing facial images in total. Overall, our method gets
the highest recognition accuracy of 79.11% on BU-
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TABLE 5
Recognition accuracy and standard deviation across seven expressions achieved by our model, multi-SVM,

DHMM and sLDA on RAFD and KDEF. The highest accuracy for each expression is highlighted in bold.

Happiness Sadness Anger Surprise Disgust Fear Neutral
Multi-SVM 82.14±0.53 68.26±0.95 78.56±0.86 80.04±0.98 63.38±0.74 56.02±1.05 46.50±1.08

sLDA 70.60±0.33 51.01±0.51 72.81±0.62 53.01±0.89 68.75±0.68 31.00±0.78 65.21±1.12
DHMM 78.10±0.85 63.92±1.23 74.68±0.77 59.23±1.99 70.27±0.94 34.79±1.71 52.01±1.13

Our model 88.25±0.23 71.41±0.43 80.41±0.56 80.65±0.88 82.70±0.65 55.65±0.71 65.35±0.91

TABLE 7
Comparison with the state-of-the-art results on BU-3DFE. The highest accuracy is highlighted in bold.

Method Classifier Features Poses Expressions Recognition Rates(%)number levels
Moore et al. [27] svm lbpu

2
5 6 1,2,3,4 58.4

Moore et al. [27] svm lbpu
ms

5 6 1,2,3,4 65.0
Moore et al. [27] svm lgbp 5 6 1,2,3,4 68.0
Moore et al. [27] svm lgbp/lbpms 5 6 1,2,3,4 71.1
Zheng et al. [51] knn sparse sift 5 6 1,2,3,4 78.5

Zheng [50] GSRRR lbpu
2

5 6 1,2,3,4 66.0
Zheng [50] GSRRR sparse sift 5 6 1,2,3,4 78.9

Wenming Zheng [50] GSRRR 83 landmark points 5 6 1,2,3,4 71.4
Our model Pose-LDA sift 5 6 1,2,3,4 79.11

TABLE 8
Performance comparison between our model and DS-GPLVM on Multi-PIE, reported in %. The highest average

accuracy is highlighted in bold.

Poses 30◦ 15◦ 0 −15◦ −30◦ Mean

DS-GPLVM 90.11±0.028 89.97±0.023 82.42±0.018 96.96±0.012 93.55±0.019 90.60
Our model 89.30±0.028 88.71±0.022 88.70±0.014 92.30±0.012 92.21±0.010 90.24

3DFE.
Recognition Accuracy on Multi-PIE: In this ex-

periment, we compared our model with the current
state-of-the-art results reported on Multi-PIE dataset,
which are obtained using a Discriminative Shared
Gaussian Process Latent Variable Model (DS-GPLVM)
[11]. DS-GPLVM first learns a discriminative manifold
shared by multiple views of a facial expression, and
then facial expression classification is performed in
the expression manifold, either in the view-invariant
manner (using only a single view of the expression)
or in the multi-view manner (using multiple views
of the expression). We trained our model using the
same experiment setting employed in [11]. That is,
we performed five-fold cross-validation on images of
270 subjects, depicting six acted facial expressions of
Neutral, Disgust, Surprise, Smile, Scream and Squint,
captured at pan angles 30◦, 15◦, 0◦,−15◦ and −30◦

(1,531 images per pose).
The comparison results (FER accuracy and standard

deviation) are provided in Table 8, which shows that
our model can achieve highly competitive results with
DS-GPLVM. Compared with the manifold learned
in DS-GPLVM, our model can discover intuitive in-
termediate face representations or latent expression
themes for better interpretation of the FER results.
In addition, expression recognition is achieved in our

model by computing the posterior distribution of the
latent variables. No separate classifier (e.g., kNN in
DS-GPLVM) is needed.

Recognition Accuracy on SFEW: In this experimen-
t, we conducted FER on SFEW, a facial expression
in the wild dataset, and compared our model with
VGG-Face [31], a state-of-the-art face model based
on a 16-layer convolutional neural network. As the
number of images in SFEW is very small, both our
model and VGG-Face are trained using the Multi-
PIE dataset and tested on SFEW. Note that there are
only four common emotions between Multi-PIE and
SFEW, i.e., happiness, disgust, neutral and surprise.
So, the testing set contains 327 images in SFEW with
these emotion labels. Also note that VGG-Face was
pre-trained with a large dataset containing 2.6 million
facial images spanning more than 2.6K identities, and
Multi-PIE was only used to fine-tune the learned
weights. The performance of VGG-Face and our mod-
el on SFEW are reported in Table 9 for each facial
expression. Apparently, our method has a more con-
sistent performance over different facial expressions
and outperforms VGG-Face on the mean recognition
accuracy.

Recognition Accuracy on Internet Images: 248
Random Internet images are downloaded to further
evaluate the performance of the four methods. From
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Fig. 8. (a) Confusion table on RAFD and KDEF by
our model. The average recognition rate is 75.0%.
(b) Confusion table on BU-3DFE by our model. The
average recognition rate is 80.5%.

TABLE 9
Performance comparison between our model and
VGG-Face on SFEW, reported in %. The highest

average accuracy is highlighted in bold.

Methods Disgust Happiness Neutral Surprise Mean

VGG-Face 63.59 17.24 28.92 56.95 41.68
Our model 43.59 43.01 41.67 50.60 44.72

these 248 random Internet images, we select 338 facial
images (one downloaded image may include multiple
faces) with expression and label them by the vali-
dation vote of five non-professional persons. Table
10 shows the recognition accuracies of four methods
for each expression. Clearly, our model achieves the
highest accuracy compared with other three methods
for all expressions. Specifically, the average accuracy
of our model is 6.65% higher than that of the second
best method: multi-SVM. Note that compared with
the ”lab-controlled” environment, the tree-based part
model will miss some faces in the unconstrained

TABLE 10
Performance (reported in %) of four state-of-the-art

methods on random downloaded facial images. In the
first column, the number in the parenthesis is the total
number of facial images with an expression. In other
columns, the number in the parenthesis is the total
number of facial images recognized correctly by the
corresponding method . The highest accuracy for

each expression is highlighted in bold.

Expressions Our model Multi-SVM sLDA DHMM

Happiness(56) 62.50(35) 55.36(31) 42.86(24) 33.93(19)
Sadness(45) 49.00(22) 42.22(19) 37.78(17) 33.33(15)
Anger(51) 51.02(26) 45.10(23) 37.25(19) 35.29(18)
Surprise(45) 68.89(31) 62.22(28) 51.11(23) 22.22(10)
Disgust(48) 75.00(36) 62.50(30) 31.25(15) 43.75(21)
Fear(45) 35.33(15) 31.56(16) 24.44(11) 28.89(13)
Neutral(48) 47.92(23) 44.08(25) 41.67(20) 45.83(22)
Average 55.66 49.01 34.75 38.05

environment. In these cases, we will count the miss
detections as wrong expressions, and therefore, it will
negatively affect the expression recognition perfor-
mance.

Fig. 9 provides several examples, in which both
detected faces (white boxes) and recognized expres-
sions by the four methods are shown with different
colors. The recognition results of our model, multi-
SVM, sLDA and DHMM for each face are listed
respectively from left to right in the white box under
the facial image. Again, the expression label of each
facial image is achieved by the validation vote of five
non-professional persons, which is shown above the
facial image. Clearly, our model outperforms other
three methods. As long as no heavy occlusion, most
faces can be accurately detected, and the expressions
can be correctly recognized by our model. The pro-
cessing time for an internet image varies greatly with
the image resolution and the number of faces in the
image.

6 SUMMARY & DISCUSSION
In this paper, we present a pose-based hierarchical
Bayesian theme model for multi-pose FER. Local ap-
pearance features and global geometry information
are combined in our model to learn an intermediate
face representation before recognizing expressions. By
sharing a pool of features with various poses, our
unified model can perform FER without separate
training and parameter tuning for each pose, and
thus is scalable in real-world applications with a large
number of poses. Experiments on both benchmark
facial expression databases and Internet images show
the superior/highly-competitive performance of our
system when compared with the current state-of-the-
arts. In the future, we plan to collect and label a large
number of natural facial images so that our model can
be trained with more poses.
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Fig. 9. The comparison examples of FER by four state-of-the-art methods (i. e., our model, multi-SVM, sLDA
and DHMM). The images are downloaded from Internet randomly. The first row of the left panel shows the results
with face overlapping and faces with glasses. The second row of the left panel shows successful recognition with
mouth or chin occlusion. The third row shows the results on different poses and scales. The bigger image in the
middle demonstrates our results on faces with complex background, such as multi-person, different face sizes
and occlusions. The right bottom image shows the results on profile faces. In the figure, HA: happiness; SA:
sadness; DI: disgust; AN: anger; SU: surprise; FE: fear; NE: neutral.
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